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A viscous thread falling from a nozzle onto a surface exhibits the famous rope-coiling effect, in which the
thread buckles to form loops. If the surface is replaced by a belt moving with speed U, the rotational symmetry
of the buckling instability is broken and a wealth of interesting states are observed �see S. Chiu-Webster and
J. R. Lister, J. Fluid Mech. 569, 89 �2006��. We experimentally studied this “fluid-mechanical sewing ma-
chine” in a more precise apparatus. As U is reduced, the steady catenary thread bifurcates into a meandering
state in which the thread displacements are only transverse to the motion of the belt. We measured the
amplitude and frequency � of the meandering close to the bifurcation. For smaller U, single-frequency mean-
dering bifurcates to a two-frequency “figure-8” state, which contains a significant 2� component and parallel
as well as transverse displacements. This eventually reverts to single-frequency coiling at still smaller U. More
complex, highly hysteretic states with additional frequencies are observed for larger nozzle heights. We pro-
pose to understand this zoology in terms of the generic amplitude equations appropriate for resonant interac-
tions between two oscillatory modes with frequencies � and 2�. The form of the amplitude equations captures
both the axisymmetry of the U=0 coiling state and the symmetry-breaking effects induced by the moving belt.

DOI: 10.1103/PhysRevE.77.066218 PACS number�s�: 82.40.Bj, 47.20.Gv, 47.20.Ky

The fascinating instabilities of very viscous fluids are fa-
miliar to anyone who has poured syrup onto a pancake �1�.
The thread of syrup elongates as it falls, and exhibits a buck-
ling instability as it nears the surface �2�. The buckling is the
result of a competition between bending and axial compres-
sion, and causes the thread to loop itself into coils. This
“liquid rope coiling effect” �3� has a long history comprising
almost a half-century of experiments �2–4,6,5,7�, scaling
analyses �7–9�, analytic theory, and numerical simulation
�7,10–14�. It has been observed that the coils tend to pile up
on the surface, forming a tall column �3–5�, and that the
frequency of coiling exhibits a complex, multivalued depen-
dence on the fall height �5,7�. Here we consider a variation
on this classic experiment, the case in which the liquid thread
falls onto a moving surface, a situation known as the “fluid-
mechanical sewing machine” �15� owing to the variety of
patterns deposited on the surface.

The moving surface breaks one of the basic symmetries of
the “pure” rope coiling problem, and has the effect of unfold-
ing the coiling instability into a rich panoply of distinct bi-
furcations. This arrangement is also very convenient experi-
mentally; the moving surface is provided by a belt that is
cleared of fluid before it returns, eliminating the pile-up of
viscous fluid at the point of contact.

The main experimental control parameters are the height
H of the nozzle from which the thread descends, and the
speed of the moving surface U. Less important parameters,
which we hold fixed in this work, are the volumetric flow
rate of the liquid Q and the diameter of the nozzle d. The
Newtonian fluid is characterized by its density �, kinematic
viscosity �, and surface tension �. Non-Newtonian effects
are negligible.

We present an experimental study of the “stitch” patterns
made by the thread as it is laid down on the belt, as a func-

tion of H and U. We first discuss a survey of the states in the
H-U plane, with denser coverage than was possible in Ref.
�15�. Then we focus on the simplest bifurcation, that from
the straight catenary state to meandering. We show that this
state is well described as a forward Hopf bifurcation and
compare the onset belt speed and Hopf frequency to recent
linear stability theory �16�. We examine the nonlinear satu-
ration of the meandering amplitude and qualitatively explain
it with a simple kinematic model of an inextensible thread.
We then take on the task of understanding the more complex
“figure 8” and other patterns that appear as the belt speed is
lowered. We propose a general amplitude equation approach,
based on the idea that the motion of the belt can be treated as
a perturbation to the pure rope coiling problem, which has
O�2� symmetry. We propose a set of coupled amplitude
equations that minimally break O�2� symmetry, and mix am-
plitudes for rotating wave modes with frequencies � and 2�.
We conjecture that all the complicated stitch patterns can be
captured by this approach, which could be generalized to
include more modes as they become excited near the multi-
frequency regime. These modes can be directly measured by
visualizing longitudinal and transverse motions of the thread
by viewing from the side.

This paper is organized in the following way. In Sec. I, we
discuss the fluid properties and the experimental apparatus.
In Sec. II, we make comparisons between our parameters and
the corresponding zero belt speed, pure coiling problem, be-
fore turning to the state diagram in Sec. II A and the mean-
dering threshold in Secs. II B and II C. In Sec. II D, we dis-
cuss experimental observations of the states beyond
meandering. Section III presents our general amplitude for-
malism, which provides a consistent framework for interpret-
ing the experimental results. We have placed a detailed dis-
cussion of the derivation of the amplitude equations in an
Appendix. Section IV is a brief conclusion.
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I. EXPERIMENT

Our experimental apparatus was a redesigned version of
the one described in Ref. �15�. It is shown schematically in
Fig. 1. The main differences were improved control and mea-
surement of the belt speed, and the use of very stable silicone
oil as the working fluid.

Silicone oil offers several advantages over Lyle’s Golden
Syrup used in previous experiments �15�. Although its vis-
cosity cannot be varied by adding water as described in Ref.
�15�, silicone oil is not susceptible to evaporation and its
viscosity varies much less with temperature than that of
sugar syrup. This makes it possible to do highly reproducible
experiments over a long period of time. It also has about
one-third the surface tension of syrup, which reduces the
thread-thread and thread-belt interaction after the fluid is laid
down on the belt.

We used Dow Corning 200© fluid, which has a nominal
kinematic viscosity of 30 000 cSt. To fully characterize the
fluid, we measured its viscosity and the temperature coeffi-
cient of its viscosity using a TA AR1000 rheometer. The
same instrument was used to confirm that the fluid is New-
tonian to an excellent approximation. We also measured the
fluid density and its temperature coefficient using an Anton-
Parr DMA 5000 densitometer. The results of these measure-
ments are shown in Table I.

The temperature of the experiment was recorded during
each run, but not otherwise controlled. The only significant
variation in the fluid properties was therefore due to the tem-
perature, and not to the degradation of the fluid. Averaged
over all experiments, the mean temperature was
22.2�0.8 °C. Accounting for this systematic error, the fluid
had a density of �=996�8 kg /m3 and a kinematic viscosity
of �= �2.77�0.02��10−2 m2 /s, or 27 700�200 cSt.

We used an internally reinforced, toothed timing belt of
width 16 mm. The belt was looped over toothed pulleys and
driven with a speed-controlled dc motor. The speed of the
belt U was measured using an averaging storage oscilloscope
to record the intensity of a laser beam that was interrupted by
the teeth of the belt. The frequency of the passage of the
teeth, measured by an internal function of the oscilloscope,
could be used to find U to within a few percent. The rein-
forced timing belt resisted stretching or slipping, even under
considerable pressure from the plastic scraper used to re-
move the silicone oil. After scraping, the belt had only a very
thin wetting layer of oil left on it. The excess oil dripped off
the scraper into a beaker, and could be recirculated.

In all the experiments reported here, we used a nozzle
with d=8.00�0.02 mm to deliver a fixed, constant volumet-
ric flux of oil Q. The oil was supplied by a reservoir and
driven by a gravity feed system with a fixed 42 cm head. The
reservoir and the nozzle were attached to a frame mounted
on a screw so that they traveled together, maintaining a con-
stant head as the fall height H was varied. H was measured
with a scale to �0.05 cm.

Before and after each run, we weighed the quantity of
oil delivered in a certain time interval, typically 2 min,
timed with a stopwatch. We found the mass flux �Q
=0.0270�0.0006 g /s remained constant within experimen-
tal error, even for runs performed many days apart. All the
experiments we discuss here used this value of �Q.

An experimental run consisted of fixing the nozzle height
H and varying the belt speed U, starting from high values of
U for which the thread is dragged horizontally by the belt to
form a steady, stretched catenary state �17�. Lowering the
belt speed to zero and then increasing it again produces a
sequence of bifurcations and a sequence of “stitch patterns”
of the thread on the belt. Care was taken to change U slowly
near the onset of the first instability to meandering, where the
state of the thread responded very slowly to small changes in
U. We recorded the oil pattern on the moving belt from
above using a 3 megapixel digital camera. To avoid heating
the oil, and to freeze the motion of the thread, the only light-
ing used was a fast photo flash. Typical photos of the main
states of interest are shown in Fig. 2. These and many other
states are shown and described in Ref. �15�.

II. RESULTS AND DISCUSSION

In this section, we will tour the zoology of states and
bifurcations exhibited by the viscous thread falling on the
moving belt. After a general overview, we focus on the sim-
plest transition first, the onset of the meandering state from
the stretched catenary as the belt speed is lowered. We com-
pare our results to the existing linear stability theory for this

FIG. 1. A schematic of the apparatus. A silicone oil stream with
volumetric flow rate Q falls a distance H from a nozzle of diameter
d onto a belt moving at speed U. The oil is removed by the scraper.
The laser, which was interrupted by the teeth of the belt, was used
to measure the speed U.

TABLE I. The measured properties of the silicone oil at the
mean experimental temperature of 22.2�0.8 °C. The size of the
measured Maxwell time and Young’s modulus show that viscoelas-
tic effects are negligible. The surface tension is taken from the
manufacturer’s data sheet.

Density � 996�8 kg /m3

Temperature coefficient of � −0.0885% / °C

Molecular viscosity � 27.63�0.05 Pa s

Temperature coefficient of � −1.6% / °C

Kinematic viscosity �=� /� �2.77�0.02��10−2 m2 /s

Maxwell time �M 	1.8 ms

Young’s modulus G 	14 kPa

Surface tension � 21.5 mN /m
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transition �16�. Moving into the nonlinear regime, we find
that the amplitude of the meandering is well described as a
forward Hopf bifurcation.

We then show that the saturation coefficient of the ampli-
tude can be deduced reasonably well from a simple model of
an inextensible thread. Finally, we consider the subsequent
bifurcations for small nozzle heights H, namely the appear-
ance of the figure-8 and translated coiling states. These and
the other more intricate states for larger H are probably best
understood from the dynamics of their amplitudes. We
present a brief outline of a bifurcation theoretic approach to
this problem.

At the outset, it is instructive to identify the states of
“pure” rope coiling that we would expect to see if the speed
of the belt in our experiments were zero. Theory and labora-
tory experiments show �7,13,14� that pure coiling can occur
in four different regimes—viscous �V�, gravitational �G�,
inertio-gravitational �IG�, and inertial �I�—depending on the
relative magnitudes of the different forces acting on the
thread. In the V, G, and I regimes, the coiling frequency 
 is
a single-valued function of the fall height H. In IG coiling,
by contrast, 
�H� is multivalued, reflecting the fact that the
nearly vertical upper part of the thread acts as a distributed
pendulum with multiple resonantly excited eigenmodes.

In a typical experiment where the fluid properties, the
flow rate Q, and the nozzle diameter d are held constant, the
regime that is obtained is determined by the fall height H. As
H increases, the regimes always succeed each other in the
order V-G-IG-I. However, while the G and I regimes can be
observed for nearly any choice of Q, d, and the working
fluid, the V and IG regimes are confined to more restricted
regions of parameter space. For a given experiment, this
space is completely characterized by the three dimensionless
groups,

�1 = � �5

gQ3�1/5
�610 � 10� , �1�

�2 = � �Q

gd4�1/4
�0.370 � 0.002� , �2�

�3 =
�d2

��Q
�1.84 � 0.06� , �3�

where g is the acceleration due to gravity, � is the surface
tension, and the values of each group for our experiments are
given in square brackets. For a fluid such as silicone oil with
a relatively low surface tension, the value of �3 has only a
minor effect on the coiling behavior, which is controlled pri-
marily by �1 and �2. It turns out that our values �1�610
and �2�0.37 are within the domain where IG coiling is
expected to occur for some range of heights �see Ref. �7�,
Fig. 3�. By contrast, the V regime does not occur, because
the characteristic height ��Q /g�1/4�3 mm over which gravi-
tational stretching of the thread becomes important is less
than the diameter of the nozzle �as usual with a gravity feed
system�. A direct numerical calculation using the method of
�13� shows that G coiling is expected in our experiments for
2	H	5.7 cm, IG coiling for 5.7	H	8.5 cm, and I coil-
ing for H�8.5 cm. The experiments reported here explore
the range 2	H	8 cm, with belt speeds up to U=10 cm /s.

A. State diagram

Figure 3 shows the states observed in the U-H plane. The
diagram was made by scrutinizing over 1100 individual pho-
tos. In general, the diagram agrees very well with Fig. 6 of
Ref. �15�, although certain details differ at larger H. At large
U, only the stretched catenary steady state is seen. As U is
reduced at fixed H, the first bifurcation is to the meandering
state.

This transition, which is nonhysteretic for H7.0 cm, is
discussed in detail below. Above H=7.0 cm, the meandering
state shows clear multifrequency behavior and a small hys-
teresis at onset. For H5.5 cm, as U is reduced, the mean-
dering state switches to a figure-8 mode before making a
second transition to translated coiling. All these transitions
are very nearly nonhysteretic. It is not clear if the figure-8
window extends all the way down to the onset of any insta-
bility, just below H=2.0 cm. For 5.7H7.0 cm, the
figure-8 state disappears, and there is a small hysteretic re-
gion where meandering and coiling coexist. For H�7.0 cm,
many complex states are observed, with windows of various
patterns separated by disordered, possibly chaotic regions. In
contrast to Ref. �15�, almost no region of slanted loops is
observed. This may be due to the reduced surface tension of
the silicone oil, which reduces the tendency of the thread to
stick to itself. Regions of W states and double coiling are
seen, as well as small reentrant regions of the simpler figure-
8 and single-frequency meandering modes. The latter was
not observed in Ref. �15�. We do not observe sidekicks,
which may require still larger H.

A complete elucidation of the multifrequency states for
H�7.0 cm must await more precise and better instrumented

FIG. 2. Photos of some of the states of the thread on the belt.
The nozzle is on the left and the belt moves from left to right. The
internal reinforcing mesh of the semitransparent belt is visible, but
the surface of the belt is smooth. The scale is in mm. �a� The
catenary steady state. �b� The meandering state. �c� The figure-8
state. �d� The translated coiling state.
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experiments. For the remainder of this paper, we will focus
on the simpler bifurcations between the steady and meander-
ing states, and on the region of the figure-8 window for H
5.5 cm.

B. Threshold of single-frequency meandering

We now consider the bifurcation from the steady stretched
state to meandering, which has been analyzed at the linear
stability level in Ref. �16�. In particular, linear theory pro-
vides clear predictions for the critical belt speed Uc at which
meandering begins as U is decreased, and for the critical
frequency �c of the meandering state that emerges. Quite
remarkably, the onset angular frequency �c �which, as we
will show, is the Hopf frequency that is obtained for a zero
amplitude of meandering� is predicted to be nearly identical
to the frequency expected for pure, nonzero amplitude rope
coiling onto a stationary surface for the same H �16�.

To accurately locate the onset of meandering, we photo-
graphed the state while very slowly decreasing and increas-
ing U through Uc. We then found the peak-to-peak amplitude
2 �A� and wavelength � of the meandering thread directly

from the digital photos. It was typically possible to use data
spanning five to ten wavelengths, and the resolution of the
images was sufficiently high that the width of the thread was
approximately ten pixels. The smallest amplitudes we could
measure were a fraction of the width of the thread, while the
largest spanned the belt.

We fit the amplitude data to a phenomenological ampli-
tude model of the Landau form,

�Ȧ = �A − �A�A�2 + h.o.t., �4�

with �= �Uc−U� /Uc. � is a time scale related to the linear
growth rate. We consider the steady state of this equation, so

�Ȧ=0, and we use the fit to determine Uc and the saturation
coefficient �. Figure 4 shows such a fit. The fits were best
near the midrange of the heights H, declining in quality for
small H due to the sparsity of data and for larger H due to the
growth of the higher-order terms �h.o.t.�. Near H�5 cm, the
amplitude has an essentially perfect square-root dependence
�A � =	� /�, as shown in Fig. 4. For H�7.0 cm, fitting was
no longer possible, and we simply estimated Uc by bracket-
ting the onset of multifrequency meandering.
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FIG. 3. �Color� The state diagram, as a function of the belt speed U and the nozzle height H. Some of the simpler states are shown in the
previous figure; more complex states are described in Ref. �15�.

MORRIS et al. PHYSICAL REVIEW E 77, 066218 �2008�

066218-4



Figure 5 shows the critical belt speed Uc as a function of
the nozzle height H, compared to the prediction of the linear
stability theory �16�. There are no adjustable parameters in
the theory. The backward looping portions of the theoretical
curve mark the inertial-gravitational regime where multifre-
quency coiling would exist in the pure rope coiling case.
Since our experimental protocol was to fix H and vary U, we
would expect to observe the upper envelope of this curve.
The agreement is very satisfactory.

We have no immediate explanation for the slight system-
atic discrepancy by which the theory overestimates Uc by an
amount that increases with H. Presumably it is due to some
unaccounted for physical effect, such as air drag or surface
tension effects at the contact point between the thread and
the belt. For large H, the thread is very sensitive to air cur-
rents and the rapidly moving belt inevitably disturbs the air
nearby.

The meander frequency � can also be easily obtained
from the measurements of the wavelength � of the meander

pattern on the belt. The angular frequency is simply �
=2�U /�. We find that � decreases linearly with U, so that it
is straightforward to extrapolate to obtain �c as shown in
Fig. 6. The functional forms of the amplitude and frequency
of meandering shown in Figs. 4 and 6 demonstrate that the
onset of single-frequency meandering is very well described
as a forward Hopf bifurcation with Hopf frequency �c. This
onset frequency is also predicted by linear stability theory
�16�; Fig. 7 shows the Hopf frequency as a function of H.
Here the agreement with the theory is excellent, and again
there are no adjustable parameters.

It is interesting that the frequency measurements track the
lower branch of the multifrequency regime, right to the end
of its existence. This is a consequence of the experimental
protocol in which H is fixed. Presumably the other frequency
branches could be accessed by varying both H and U, or
perhaps by making finite perturbations to the state of the
thread. The frequency branches have been observed in pure
rope coiling experiments �5,7�. The lower branch and the
observation of single-frequency meandering both end near
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FIG. 4. �Color online� The amplitude �A� of the meandering
motion as a function of the belt speed U, for H=5.3 cm. The up-
ward �downward� pointing triangles indicate data taken with in-
creasing �decreasing� U. The solid line is a fit to Eq. �4� with Uc

=4.01 cm /s and �=4.62 cm−2. No higher-order terms were re-
quired. The smallest nonzero amplitudes here are about half the
width of the thread.
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FIG. 5. �Color online� The critical belt speed Uc vs H, extracted
from fits to amplitudes like the one shown in the previous figure.
The solid line is calculated from the linear stability analysis of Ref.
�16�, with no adjustable parameters.
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the theoretical result from the linear stability calculation of Ref.
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H=7.0 cm. Above this value, we find mostly multifrequency
meandering at onset, as shown in Fig. 3.

C. Meandering amplitude saturation: A simple model

The fits to the amplitude of meandering also give a quan-
tity that is not predicted by linear theory, namely the coeffi-
cient � of the cubic nonlinear term in Eq. �4�. Figure 8
shows the experimental result. We find that � is a decreasing
function of H. The coefficient � controls the dependence of
the saturated amplitude on the belt speed. It can be predicted
by the following argument, which is based on symmetry and
the assumption of a constant contact-point speed.

We employ coordinates in the lab frame with x longitudi-
nal to the belt, y transverse to it, and z up. Ribe et al. �16�
observed that the linear perturbation equations about a steady
stretched catenary decouple into disjoint systems for pertur-
bations in the plane �x ,z� of the catenary and those out of the
�x ,z� plane. Meandering is an out-of-plane perturbation at
linear order. We observe that the reflectional symmetry of the
catenary further implies that the nonlinear perturbation equa-
tions are invariant to a change in the sign of all the out-of-
plane variables. Hence if we perform a series expansion for
the weakly nonlinear form of meandering near onset �A
�1�, then all the in-plane variables are even functions of A
and all the out-of-plane variables are odd functions of A. In
particular, the contact point (x�t� ,y�t�) between thread and
belt must have the form

y�t� = A sin��t� + O�A3� ,

x�t� = x0 + B cos�2�t + �� + O�A4� , �5�

where B=O�A2�, �=�c+O�A2�, � is a constant phase, and
x0 is the unperturbed displacement plus an O�A2� correction.
Thus, the absolute speed V�t� of the contact point is given by

V2 = �ẋ − U�2 + ẏ2,

=U2 + 4B�U sin�2�t + ��

+ A2�2�1 + cos�2�t��/2 + O�A4� . �6�

We now make the kinematic assumption that V is constant
and always equal to the critical belt speed Uc. This can be
motivated either by the empirical observation in Ref. �16�
that the steady speed of coiling is remarkably close to the
belt speed at marginal stability, or by an asymptotic argu-
ment that the amount of stretching in the bending boundary
layer of a slender thread is negligible �18�. Setting V=Uc in
Eq. �6� gives

Uc
2 = U2 + A2�2/2 + O�A4� , �7�

B = A2�/�8U� + O�A4�, and � =
�

2
+ O�A2� . �8�

We rearrange Eq. �7�,

A2 = 2�Uc
2 − U2�/�2 � �4Uc

2/�c
2���Uc − U�/Uc� , �9�

and compare with Eq. �4� to predict

� = ��c/2Uc�2. �10�

It is evident from Fig. 8 that this purely kinematic prediction
of � works remarkably well, particularly at larger heights. In
effect, the buckling part of the thread behaves like an inex-
tensible rope being played out onto the moving belt, though
there is still extension in the falling part closer to the nozzle.
The greater discrepancy between observation and kinematic
prediction at lower heights is likely due to weaker scale sepa-
ration between the falling and buckling parts of the thread.

It would be interesting to examine the motion of an actual
inextensible, flexible rope falling on the moving belt. Re-
cently, the classic liquid rope-coiling instability was com-
pared to a real rope in just this way �19�. Presumably, the
kinematic condition on the rope at the point of contact with
the surface of the belt would have to be enforced by their
frictional interaction.

The above kinematic assumption also makes predictions
for the amplitude B and phase � of a small, frequency 2�,
longitudinal oscillation. The existence of this oscillation can
be discerned in the spacetime plot of meandering viewed
from the side, shown in Fig. 9�a�, which is discussed in more
detail below. The experimental resolution of B is, however,
insufficient to make a quantitative comparison to theory. The
form of Eq.�5� is justified from consideration of the full-
amplitude equations, which are presented in Sec. III.

D. Beyond meandering: The figure-8
and translated coiling states

For H5.5 cm, the meandering state gives way at a non-
hysteretic bifurcation to the figure-8 state shown in Fig. 2�c�.
The figure-8 state is, in its turn, unstable to the translated
coiling state at lower H. This state links directly to pure fluid
rope coiling at H=0. It is difficult to extract quantitative
information about these states from photos of the “stitch pat-
tern” on the belt. However, by viewing the thread from the
side, the x�t� and y�t� components of motion can be mea-
sured. We accomplished this by positioning a small mirror at
45° to the belt, so that a camera could image both the longi-
tudinal and the transverse components at a point close to the
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FIG. 8. �Color online� The nonlinear saturation coefficient �, as
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deduced from fits to Eq. �4�. Diamond symbols show the kinematic
estimate ����c /2Uc�2 for each height, discussed in the text. The
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location of maximum curvature of the thread, which was a
few mm above the surface of the belt. Taking a single hori-
zontal video line from such an image and plotting it in time
gives spacetime images such as those in Fig. 9.

In these images, it is apparent that the meandering state
consists of essentially a single frequency � in y, with a small
component at 2� in x with amplitude B�A, as assumed in
Eq. �5� above. The bifurcation to the figure-8 state clearly
involves the excitation of a large 2� mode in y, which mixes
with the � mode in x to produce the figure-8 pattern. At the
bifurcation to translated coiling at lower H, the 2� mode
amplitude becomes small again, and the state is due to x and
y oscillations at � which are nearly 90° out of phase.

These qualitative observations suggest that the
meandering—figure-8—translated coiling series of transi-
tions, and by extension all of the states of motion of the
thread, could be understood in the framework of complex
amplitude equations for modes with a few frequencies and
their harmonics. These frequencies are probably closely re-
lated to the frequencies of pure coiling, including those in the
multifrequency regime.

III. AMPLITUDE EQUATIONS AND SYMMETRY

We now discuss a more abstract approach to understand-
ing the “stitch patterns” through the machinery of equivari-
ant bifurcation theory �20�. This theory offers a formal way
to derive appropriate amplitude equations, starting from
symmetry considerations alone. Such a qualitative approach
offers a complementary perspective on the dynamics to that
gained from fluid mechanical treatments. It also provides in-
sight into the overall organization of the bifurcations be-
tween these highly symmetric states. Given the rich phenom-
enology of this system, it seems wise to follow this route
rather than attempt to account for all the states de novo from
fluid mechanics alone. Although a rather large number of

amplitudes may be required, this approach is still much sim-
pler than the alternative. In principle, the full fluid-
mechanical description could be systematically projected
onto a few modes, and the coefficients of the amplitude
equations calculated. Alternatively, the coefficients could be
deduced directly from experimental data of the kind shown
in Fig. 9.

We conjecture that the dynamics of the thread is close to
the axisymmetric case of pure rope coiling, so that the mo-
tion of the belt can be treated as a perturbation. The moving
belt breaks the rotational symmetry while preserving a re-
flection symmetry in a vertical plane containing the direction
of travel of the belt. In bifurcation-theoretic terms, the onset
of meandering from the steady catenary state is a Hopf bi-
furcation with weakly broken O�2� symmetry �21�. We de-
note the frequency at the Hopf bifurcation by �. To describe
the secondary bifurcation in which the figure-8 states appear,
a minimal description must include amplitude equations for a
mode with frequency 2�. We argue in the Appendix that the
physical symmetries provide enough constraints to determine
the form of the relevant amplitude equations. In subsection
III, we discuss the effect of a further symmetry property,
which, while certainly not an exact symmetry of the physical
problem, appears to help explain certain intriguing aspects of
the dynamics of the viscous thread.

We propose an abstracted description of the fluid-
mechanical problem in which we focus on the position of the
contact point of the viscous thread on the belt. We express
the contact position of the viscous thread in the lab frame
(x�t� ,y�t�) as the complex position coordinate

p�t� = x�t� + iy�t� = A+�t�ei�t + A−�t�e−i�t + B+�t�e2i�t

+ B−�t�e−2i�t, �11�

where A+, A−, B+, and B− are the complex amplitudes of four
rotating wave modes. By symmetry, the generic amplitude
equations describing the dynamics, truncated at cubic order,
take the form

Ȧ+ = A+��1 + i�1 + a1�A+�2 + a2�A−�2 + b1�B+�2 + b2�B−�2�

+ s1Ā−B+B− + �b�e1Ā− + p1Ā+B+ + q1Ā+B̄− + p3A−B+

+ q3A−B̄−� , �12�

Ḃ+ = B+��2 + i�2 + c1�B+�2 + c2�B−�2 + d1�A+�2 + d2�A−�2�

+ s2B̄−A+A− + �b�e2B̄− + p2Ā−
2 + q2A+

2 + p4A+Ā−� ,

�13�

and two similar equations for A− and B−, given in the Ap-
pendix. The coefficients of the nonlinear terms in Eqs. �12�
and �13� are in general complex-valued, and overbars denote
complex conjugates. The bifurcation parameters �1 and �2 are
complicated unknown functions of the dimensionless groups
identified above, or equivalently of the natural experimental
control parameters U and H. �1�Uc ,H�=0 at the onset of
meandering, as described above in Sec. II B. �2�Uc ,H� re-
mains negative and describes the linear damping of the 2�
mode. The parameter �b, a function of U with �b�U=0�=0,

T
im
e

meandering figure 8 coiling

x x x yyy

(a) (b) (c)

FIG. 9. �Color online� Spacetime views of the side of the thread,
with time running upward. x is a coordinate longitudinal to the belt,
while y is transverse. �a� Shows the meandering state, where almost
all the motion is transverse. �b� Shows the figure-8 state in which
two harmonics of the basic frequency are clearly visible in the
longitudinal motion. �c� Shows translated coiling, in which one
main harmonic appears, with a phase difference between x and y.
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controls the strength of the symmetry-breaking effects of the
belt on the thread.

Equations �12� and �13� justify the use of the phenomeno-
logical Eqs. �4� and �5�, as we discuss further below. A full
analysis of the bifurcation structure of Eqs. �12� and �13� is
mathematically feasible, but beyond the scope of this paper.
In the remainder of this section, we first discuss the mean-
dering instability, and then the transition from meandering to
figure-8’s, in the context of these amplitude equations.

The steady catenary solution A+=A−=B+=B−=0 exists for
all parameter values and is stable if �1��bRe�e1�	0. Ex-
perimentally, there is a critical height H0�2.0 cm below
which no rope coiling instability occurs for U=0. It is there-
fore natural to speculate that, for small U and heights close
to H0, we could assume �1� �H−H0� and �b�U. These scal-
ings in turn predict a straight-line marginal stability bound-
ary for the onset of meandering near this end point. This
regime is difficult to reach experimentally, however, due to
the extremely slow time evolution and the thickening of the
thread relative to its meandering amplitude.

In the axisymmetric case U=0, when �b=0, there is an
O�2�-symmetric Hopf bifurcation at H=H0 in which two os-
cillatory branches appear �22�: a rotating wave correspond-
ing to coiling, and a standing wave corresponding to mean-
dering. The coiling state persists under weak symmetry
breaking �21� and evolves smoothly into the translated coil-
ing state A+�0, A−=B+=B−=0, observed for small U. In the
axisymmetric case, the bifurcating standing wave has no pre-
ferred horizontal orientation. Under weak symmetry break-
ing, two standing waves out of this family of states survive.
One of these states corresponds to oscillations where the
thread lies entirely within the symmetry plane of the belt at
all times �a “longitudinal oscillation”�, the other �“meander-
ing”� has the combination spatiotemporal symmetry � ���

�defined precisely in the Appendix� of reflection across the
belt followed by waiting for a half-period of the oscillation.

The figure-8 state also has the symmetry � ��� and so, to
simplify the further discussion of meandering and figure-8’s,
we restrict our attention only to solutions that have � ���

symmetry, that is, the form A+=−Ā−
A and B+= B̄−
B. We

refer to the invariant subspace �A ,−Ā ,B , B̄� as S; impor-
tantly, S remains invariant even if higher-order terms are
added to the amplitude equations.

Within S, the amplitude equations simplify to become

Ȧ = ��1 + i�1 − �be1�A + i�b�1ĀB + �1A�A�2 + �2A�B�2,

�14�

Ḃ = ��2 + i�2 + �be2�B + i�b�2A2 + �3B�B�2 + �4B�A�2.

�15�

The coefficients e1 ,e2 ,�1 ,�2 ,�1 , . . . ,�4 in Eqs. �14� and
�15� can be deduced by direct comparison with Eqs. �12� and
�13�. Near the initial meandering instability �1−�bRe�e1�=0,
and we may eliminate B adiabatically, or via a center mani-
fold reduction, so that to leading order B=−i�b�2A2 / ��2
+ i�2+�be2�+O�A3� and hence

Ȧ = ��1 + i�1 − �be1�A + � �b
2�1�2

�2 + i�2 + �be2
+ �1�A�A�2

�up to O�A3��, which is the usual amplitude equation for a
Hopf bifurcation, justifying the use of Eq. �4�.

Writing A=R1ei�1 and B=R2ei�2 we find that, due to the
time-translation symmetry, Eqs. �14� and �15� reduce further,
to a three-dimensional set of ordinary differential equations
�ODEs� for R1, R2, and the relative phase �=�2−2�1. There
are regions of parameter space in which time-periodic solu-
tions with a constant relative phase � do not exist. In other
regions of parameter space, there will typically be two pos-
sible constant values �=��. In general, within S we recover
the form

y�t� = 2R1 sin �t , �16�

x�t� = 2R2 cos�2�t + �� , �17�

for the location of the tip of the thread, which confirms Eq.
�5�.

If �1�0 and �2	0 �as expected for the onset of meander-
ing when H	6.0 cm�, and if �b=0, we would expect stable
meandering to exist for 0	�1	Re��1��2 /Re��4�, choosing
Re��1�	0 to ensure that the onset of meandering is super-
critical, and Re��4��0 to ensure the existence of an insta-
bility of meandering to the 2� mode that produces the
figure-8 pattern. At �1=Re��1��2 /Re��4� there is a pitchfork
bifurcation at which meandering loses stability to “mixed
modes” involving the 2� mode. For �b�0, the pitchfork
bifurcation becomes imperfect, with a continuous, but rapid
and nonhysteretic, increase in the amplitude of the 2� mode
in the vicinity of �1=Re��1��2 /Re��4�. Thus, the sequence
of transitions observed experimentally has a natural interpre-
tation in terms of the mode interaction described above.

Moreover, the experimental evidence indicates a discon-
tinuous but not hysteretic transition from meandering to fig-
ure 8; from the theory one would expect either that the tran-
sition is indeed abrupt �for example a subcritical bifurcation�
and accompanied by measurable hysteresis, or that the tran-
sition is nonhysteretic but continuous. The resolution of the
exact nature of the transition from meandering to the figure-8
state will require better controlled experiments to sort out.
Direct measurement of the amplitudes and phases of the �
and 2� components of the pattern should enable this intrigu-
ing discrepancy to be resolved.

Additional model symmetry

The amplitude equations, discussed above, do not pre-
cisely determine the relative phase �. However, experimental
results �Fig. 2 as well as those of Ref. �15�� indicate that the
values �=� /2 �the “bunched-up meandering” state dis-
cussed in Ref. �15�� and near �=−� /2 �figure 8� are consis-
tently selected. It is natural to ask whether there is a reason
for this, either of an abstract or a fluid-mechanical nature.

As far as the abstract model problem goes, it turns out that
there is indeed an additional symmetry that implies �
= �� /2. This symmetry �labeled h in the Appendix� is a
180° rotation of the �x ,y� plane followed by reversal of the
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direction of time. Clearly this is not a symmetry of the origi-
nal physical problem: in no sense are we suggesting that
falling fluid in the thread is related to a viscous thread of
rising fluid. But in the bifurcation-theoretic model, we ignore
the vertical direction, and the time-reversal applied to the
equilibrium state results only in the reversal of the direction
of travel of the belt. Even so, we would expect h to be only
an approximate symmetry since the initial steady catenary
state is not symmetric under a 180° rotation. The conse-
quences of the extra symmetry h would be to force the
imaginary parts of all coefficients in Eqs. �14� and �15� to be
real. In this case, the ODEs for R1, R2, and the relative phase
�=�2−2�1 become

Ṙ1 = ��1 − �be1�R1 − �b�1R1R2 sin � + �1R1
3 + �2R1R2

2,

�18�

Ṙ2 = ��2 + �be2�R2 + �b�2R1
2 sin � + �3R2

3 + �4R2R1
2,

�19�

�̇ = �b��2R1
2

R2
− 2�1R2�cos � . �20�

Hence, from Eq. �20�, time-periodic solutions with a constant
relative phase exist only for �= �� /2. If the coefficients in
Eqs. �14� and �15� have �small� nonzero imaginary parts,
then the two time-periodic states persist but now only have
�� �� /2. There is some experimental evidence that the
bunched-up meandering state observed in Ref. �15� has �
�� /2, without having exact equality.

More generally, Eqs. �18�–�20� are equivalent to the am-
plitude equations of the well-studied 1:2 steady-state mode
interaction �23–26�. The meandering and figure-8 states cor-
respond to “mixed-mode” equilibria in this language, since
both states contain nonzero amounts of both the � and 2�
modes. However, the analysis in Refs. �23–26� concentrates
on cases in which the quadratic terms have order unity coef-
ficients and strongly influence the dynamics near R1=R2=0.
In contrast, in the present case, we are interested in the re-
gime �b�1 where we see from Eqs. �18�–�20� that the qua-
dratic terms fix the relative phase � but only weakly affect
the amplitudes R1 and R2.

Having derived the form of the amplitude equations on
symmetry grounds, an obvious next step would be to com-
pute or measure the undetermined coefficients in them. It is
straightforward to extend Eqs. �12� and �13� to account for
higher frequencies, although the number of terms, even at
cubic order, grows quite rapidly. Projecting the full dynamics
of the thread onto these equations serves to simplify the
problem to finding the coefficients and how they depend on
the nondimensional experimental parameters H�g /�2�1/3,
U�gH2 /��, and �1, �2, and �3 given by Eqs. �1�–�3�. In
principle, the entire state diagram shown in Fig. 3 may be
understood in this way.

IV. CONCLUSIONS

In this paper, we have reported a detailed experimental
survey of the “stitch patterns” observed in a more precise

version of the “fluid-mechanical sewing machine” �15�. We
studied, in particular, the onset of the meandering state and
measured its critical belt speed, Hopf frequency, and ampli-
tude saturation. Our theoretical understanding and interpre-
tation of this instability of the catenary thread comes from
three sources: a detailed numerical solution of the linear sta-
bility problem �16�, an ad hoc argument that used the as-
sumption that the contact point of the thread with the belt has
a constant velocity, and the construction of the full amplitude
equations on symmetry grounds.

We found that the onset of meandering is very well de-
scribed as a Hopf bifurcation with the critical parameters Uc
and �c accurately predicted by a linear stability analysis of
the fluid equations �16�. Surprisingly, the nonlinear satura-
tion of the meandering motion could be mostly accounted for
by simply assuming that the fluid thread behaves as an inex-
tensible rope being played out onto the belt. This is the case
despite the considerable buckling and stretching of the real
thread. Finally, the full-amplitude equations, derived from
symmetry considerations independent of the fluid-
mechanical details, provide a systematic way of organizing
and interpreting the otherwise rather complex motion of the
thread.

From the full-amplitude equations we were able to ex-
plain, at least in outline, the existence of the figure-8 bubble
that occurs over a substantial part of the state diagram for
smaller H, as seen in Fig. 3. It seems likely that this state is
a manifestation of a 1:2 steady-state mode interaction
�23–26�. In general, such a mode interaction is well known
to generate complex dynamics in certain cases, such as when
�1 and �2 in Eqs. �18�–�20� have opposite signs. In this case,
one expects quasiperiodic oscillations and robust heteroclinic
cycling. Physically, such dynamical complexity would be
most easily observed in the intermittent evolution of the rela-
tive phase variable � on a time scale that is slow compared to
the basic meandering oscillation period. Future, improved
experiments could look for such subtle effects.

An interesting question that needs to be addressed more
fully, both in experiment and theory, is the variation of the
oscillation frequency as the belt speed is reduced. Ribe et al.
�16� compared the frequency at the onset of meandering to
the frequency of finite amplitude “pure” coiling �when U
=0� at the same height H and found excellent agreement.
Our results, however, indicate that the meandering frequency
decreases substantially from that at onset as the belt speed
decreases, as shown in Fig. 6. This decrease is exactly what
is expected from the linear amplitude dependence of the fre-
quency following a Hopf bifurcation. But how can this be
reconciled with the requirement that the frequency must also
agree with the pure coiling frequency again when U is ulti-
mately reduced to zero? Is it the case that the frequency
reaches a local minimum as U is decreased, before increas-
ing continuously back toward pure coiling, or are there dis-
continuities? What is the effect of the intervening figure-8
state on the fundamental frequency?

For larger values of H, the amplitude equation model
would have to be extended to allow for modes with the ad-
ditional frequencies that arise from the pendulum motions of
the thread. Using data gathered from side-view images such
as that shown in Fig. 9, amplitudes and phases of the con-
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stituent motions of the thread could be acquired and inter-
preted within the framework of the predictions of the ampli-
tude equations. Future work using this approach will require
a more complete investigation of the bifurcation structure of
multifrequency amplitude equations with weakly broken
O�2� symmetry.
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APPENDIX: RESONANT HOPF BIFURCATION
WITH WEAKLY BROKEN O(2) SYMMETRY

In this appendix, we briefly sketch the derivation of the
abstract amplitude equations, Eqs. �12� and �13�, describing
the dynamics for heights H toward the lower end of the range
investigated experimentally. We emphasize that this discus-
sion proceeds in a manner independent of the fluid-
mechanical details of the flow, and, although it provides
some support for our experimental results and simple ex-
planatory ansatz, it remains a modeling approach.

The system is taken to be a weak perturbation of the axi-
symmetric case that corresponds to U=0. We first compute
the amplitude equations for the axisymmetric case and then
discuss how the weak symmetry breaking provided by the
belt admits additional coupling terms.

In the axisymmetric case, the symmetry group consists of
planar rotations about the origin, and reflections in vertical
planes containing the origin: this is the orthogonal group
O�2�. The action of O�2� on the plane R2 containing the belt
is generated by the elements � �a reflection in the plane
containing the belt� and �� �rotation through angle ��. Iden-
tifying �x ,y��R2 with p=x+ iy�C, we have

��p� = p̄, ���p� = ei�p .

In addition, the system has no preferred origin in time, and
hence the time-periodic solutions we investigate have no pre-
ferred phase. This additional symmetry �� : t→ t+� /� gen-
erates a group S1 corresponding to phase shifts of the ampli-
tudes. We suppose that the coiling motion can be described
as a sum of four oscillatory amplitudes for a complex posi-
tion coordinate, as in Eq. �11�. Let A= �A+ ,A− ,B+ ,B−� denote
the vector of amplitudes. The action of the full symmetry
group O�2��S1 on A is inherited from the action on R2 of
the generators �� ,���, and the phase-shift symmetry ��,

��A+,A−,B+,B−� = �Ā−,Ā+,B̄−,B̄+� , �A1�

���A+,A−,B+,B−� = ei��A+,A−,B+,B−� , �A2�

���A+,A−,B+,B−� = �ei�A+,e−i�A−,e2i�B+,e−2i�B−� .

�A3�

The required amplitude equations

Ȧ = F�A� , �A4�

which are symmetric under Eqs. �A1�–�A3�, obey the equi-
variance condition �F�A�=F��A� for all group elements �
�O�2��S1. The equivariance condition is a mathematical
statement of the intuitive notion that whenever A�t� is a so-
lution of the amplitude equations, we require �A�t� also to
be a solution trajectory. We can now determine the form of
the most general amplitude equations by computing invariant
and equivariant polynomials. General methods for this exist
�20� but are too cumbersome to apply here, particularly since
we intend only to compute terms at the first few orders. As
usual in problems of this type, the terms �A+�2, �A−�2, �B+�2,
and �B−�2 �and sums and products of these� are invariant. To
find other invariants, we adopt the “brute force� approach of
looking for an invariant term A+

aA−
bB+

cB−
d with integer powers,

using the convention that a negative power denotes a positive
power of the complex conjugate variable. Invariance under
�� and �� implies a+b+c+d=0 and a−b+2�c−d�=0. We
define the order of the invariant term to be �a�+ �b�+ �c�+ �d�.
The invariants of order 2 are �A+�2, �A−�2, �B+�2, and �B−�2. It is
easily seen that the only invariant of order 4 that is not a

product of order 2 invariants is Ā+Ā−B+B−. It follows that the

terms up to cubic order in the first component Ȧ1
=F1�A+ ,A− ,B+ ,B−� of Eq. �A4� will be

A+, A+�A+�2, A+�A−�2,

A+�B+�2, A+�B−�2, Ā−B+B−.

By now applying the reflection symmetry �, we may deduce
the second amplitude equation F2�A+ ,A− ,B+ ,B−�. Note that
� implies that the coefficients in F2 are the complex conju-
gates of those in F1.

Similarly we deduce the order 2 and order 4 invariants for
F3 and then use � to compute F4 from F3. The resulting
amplitude equations, Eqs. �12� and �13� with �b
0, describe
the axisymmetric interaction of the � and 2� modes.

The introduction of a �slowly moving� horizontal belt
changes the symmetry of the problem in two ways. The first
of these is clear: it breaks the rotation symmetry ��. To ac-
count for this effect, we compute low-order terms that are
not symmetric under �� but which do respect the remaining
symmetry ��. The eight invariants are

A+A−, B+B−, Ā+A−B+, A−
2B+,

A+
2B̄+, A+Ā−B−, A−

2B̄−, A+
2B−.

The quadratic invariants give rise to the linear terms in Eqs.
�12� and �13� and so split the symmetric Hopf bifurcation at
�1=0 into two generic Hopf bifurcations at �1��bRe�e1�
=0. The cubic invariants generate the quadratic terms. The
amplitude equations for the four amplitudes are then given
by Eqs. �12� and �13� along with
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Ȧ− = A−��1 − i�1 + ā1�A−�2 + ā2�A+�2 + b̄1�B−�2 + b̄2�B+�2�

+ s̄1Ā+B+B− + �b�ē1Ā+ + p̄1Ā−B− + q̄1Ā−B̄+ + p̄3B−A+

+ q̄3A+B̄+� , �A5�

Ḃ− = B−��2 − i�2 + c̄1�B−�2 + c̄2�B+�2 + d̄1�A−�2 + d̄2�A+�2�

+ s̄2B̄+A+A− + �b�ē2B̄+ + p̄2Ā+
2 + q̄2A−

2 + p̄4Ā+A−� .

�A6�

Some features of the phase relationship between the �
and 2� modes suggest the introduction of an additional sym-
metry, denoted h: rotating the apparatus by 180° around the
vertical z axis and reversing the direction of travel of the belt
�i.e., reversing the direction of time� leaves the basic state
p=0 unchanged. For the bifurcation problem constructed in
this appendix, h is an independent symmetry that introduces
another constraint. But h is clearly not an exact symmetry of
the original fluid-mechanical problem where the fluid in the
viscous thread falls under gravity, and the initial equilibrium
state is a catenary rather than an exactly vertical thread. So,
at best, the effect of h is felt in some approximate way by

amplitude equations describing the original physical system.
The symmetry h�x ,y , t�=−�x ,y , t� acts on the mode am-

plitudes as

h�A+,A−,B+,B−� = − �A−,A+,B−,B+� . �A7�

So the composite operation h �� sends each amplitude to the
negative of its complex conjugate; equivariance of Eq. �A4�
under h �� implies that odd-order terms would have real co-
efficients and even-order terms would have purely imaginary
coefficients. More realistically, we might hope that the coef-
ficients have nonzero but small �compared to their modulus�
imaginary or real parts at odd and even orders, respectively.

The analysis of Eqs. �12�, �13�, �A5�, and �A6� is simpli-
fied by the existence of invariant subspaces for the
dynamics—technically, the fixed-point subspaces of group
elements. The most relevant of these for this paper consists
of those points left unchanged by the combined operation
� ��� �reflection in the plane of the belt followed by a time
shift of half an oscillation period�: it is therefore useful to
define the invariant subspace

S 
 Fix�� � ��� = �A+,− Ā+,B+,B̄+� ,

which contains both the meandering and figure-8 states.
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